extension | φ:Q→Aut N | d | ρ | Label | ID |
C33⋊(C2×Q8) = S3×PSU3(𝔽2) | φ: C2×Q8/C1 → C2×Q8 ⊆ Aut C33 | 24 | 16+ | C3^3:(C2xQ8) | 432,742 |
C33⋊2(C2×Q8) = C6×PSU3(𝔽2) | φ: C2×Q8/C2 → Q8 ⊆ Aut C33 | 48 | 8 | C3^3:2(C2xQ8) | 432,757 |
C33⋊3(C2×Q8) = C2×C33⋊Q8 | φ: C2×Q8/C2 → Q8 ⊆ Aut C33 | 48 | 8 | C3^3:3(C2xQ8) | 432,758 |
C33⋊4(C2×Q8) = S3×C32⋊2Q8 | φ: C2×Q8/C2 → C23 ⊆ Aut C33 | 48 | 8- | C3^3:4(C2xQ8) | 432,603 |
C33⋊5(C2×Q8) = C33⋊5(C2×Q8) | φ: C2×Q8/C2 → C23 ⊆ Aut C33 | 48 | 8- | C3^3:5(C2xQ8) | 432,604 |
C33⋊6(C2×Q8) = C33⋊6(C2×Q8) | φ: C2×Q8/C2 → C23 ⊆ Aut C33 | 24 | 8+ | C3^3:6(C2xQ8) | 432,605 |
C33⋊7(C2×Q8) = C3×S3×Dic6 | φ: C2×Q8/C4 → C22 ⊆ Aut C33 | 48 | 4 | C3^3:7(C2xQ8) | 432,642 |
C33⋊8(C2×Q8) = C3×Dic3.D6 | φ: C2×Q8/C4 → C22 ⊆ Aut C33 | 48 | 4 | C3^3:8(C2xQ8) | 432,645 |
C33⋊9(C2×Q8) = S3×C32⋊4Q8 | φ: C2×Q8/C4 → C22 ⊆ Aut C33 | 144 | | C3^3:9(C2xQ8) | 432,660 |
C33⋊10(C2×Q8) = C3⋊S3×Dic6 | φ: C2×Q8/C4 → C22 ⊆ Aut C33 | 144 | | C3^3:10(C2xQ8) | 432,663 |
C33⋊11(C2×Q8) = C32⋊9(S3×Q8) | φ: C2×Q8/C4 → C22 ⊆ Aut C33 | 72 | | C3^3:11(C2xQ8) | 432,666 |
C33⋊12(C2×Q8) = C3⋊S3⋊4Dic6 | φ: C2×Q8/C4 → C22 ⊆ Aut C33 | 48 | 4 | C3^3:12(C2xQ8) | 432,687 |
C33⋊13(C2×Q8) = C6×C32⋊2Q8 | φ: C2×Q8/C22 → C22 ⊆ Aut C33 | 48 | | C3^3:13(C2xQ8) | 432,657 |
C33⋊14(C2×Q8) = C2×C33⋊4Q8 | φ: C2×Q8/C22 → C22 ⊆ Aut C33 | 144 | | C3^3:14(C2xQ8) | 432,683 |
C33⋊15(C2×Q8) = C2×C33⋊5Q8 | φ: C2×Q8/C22 → C22 ⊆ Aut C33 | 48 | | C3^3:15(C2xQ8) | 432,695 |
C33⋊16(C2×Q8) = C3×C6×Dic6 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C33 | 144 | | C3^3:16(C2xQ8) | 432,700 |
C33⋊17(C2×Q8) = C6×C32⋊4Q8 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C33 | 144 | | C3^3:17(C2xQ8) | 432,710 |
C33⋊18(C2×Q8) = C2×C33⋊8Q8 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C33 | 432 | | C3^3:18(C2xQ8) | 432,720 |
C33⋊19(C2×Q8) = S3×Q8×C32 | φ: C2×Q8/Q8 → C2 ⊆ Aut C33 | 144 | | C3^3:19(C2xQ8) | 432,706 |
C33⋊20(C2×Q8) = C3×Q8×C3⋊S3 | φ: C2×Q8/Q8 → C2 ⊆ Aut C33 | 144 | | C3^3:20(C2xQ8) | 432,716 |
C33⋊21(C2×Q8) = Q8×C33⋊C2 | φ: C2×Q8/Q8 → C2 ⊆ Aut C33 | 216 | | C3^3:21(C2xQ8) | 432,726 |